

Li-Fi modulation and networked Li-Fi attocell concept *Tutorial*

Professor Harald Haas

23 December, 2013

Contributions by...

- Svilen Dimitrov,
- Thilo Fath,
- Irina Stefan,
- Dobroslav Tsonev,
- Stefan Videv,
- Wasiu Popoola,
- Enrique Poves,
- Harald Burchardt,

- Sinan Sinanovic
- Nikola Serafimovski,
- Abdelhamid Younis,
- Mostafa Afgani,
- Cheng Chen,
- Yichen Li,
- John Fakidis,

Wireless data is growing exponentially ...

YouTube

- In 2011, ~ 140 views for every person on earth (over 1 Trillion views
- More video is uploaded to YouTube in one month than the 3 major US networks created in 60 years
- > 72 hours of video are uploaded to YouTube every minute
- 25% of global YouTube views come from mobile devices

Source - http://www.youtube.com/t/press_statistics

Internet video traffic is growing at 48% CAGR

Source - Cisco Visual Networking Index: Forecast and Methodology, 2010-2015

... leading to RF Spectrum Shortage

- 1. Identify new spectrum, and/or
- 2. Enhance spectrum reuse (smaller cells)

The electromagnetic spectrum

Optical Attocell Concept

Link-Level Communication System

Communication Scenarios

State-of-the-Art: Wi-Fi

Wi-Fi Router Location

State-of-the-Art: Wi-Fi

Optical Attocell Network

Data rates per device

- Space per desk 4 m²
- 100 employees per floor
- Assume a uniform distribution of employees
- 20m x 20m floor = 400 m^2
- Area can be covered by a single Wi-Fi AP
- Each Li-Fi AP can cover around 4 m²
- Wi-Fi data rate 600 Mbps
- Li-Fi data rate 20 Mbps

Interference Scenario

I. Stefan, et al., VTC 2013-Spring, 2013

Find variables:	$x_{c1}, y_{c1}, x_{c2}, y_{c2},, x_{cL}, y_{cL}, d$		
Criteria:	$\max E[A_e]$		
Constraints:			
	$\frac{-\text{Length.Room}}{2} < x_{c1}, x_{c2},, x_{cL} < \frac{\text{Length.Room}}{2}$		
	$\frac{-\text{Width.Room}}{2} < y_{c1}, y_{c2},, y_{cL} < \frac{\text{Width.Room}}{2}$		
	$0 < d < \frac{\min(\text{Width.Room,Length.Room})}{N_{\text{led}}}$		
	$E_{\rm h} > 400{\rm lx}$ for at least 50% of the room area		
	and		
	$E_h > 100 lx$ for the rest of the room		

Rx FOV 85° - without lighting constraint

 $1.14 \, b/s/Hz/m^2$

Rx FOV 85° - with lighting constraint

 0.76 b/s/Hz/m^2

Rx FOV 45° - without lighting constraint

 2.24 b/s/Hz/m^2

Rx FOV 45° - with lighting constraint

 $1.918 \, b/s/Hz/m^2$

Digital Modulation

System	Information	Signal	
RF	carried on electric field	complex valued	bipolar
Incoherent Optical	carried on optical intensity	real valued	unipolar non-negative

Optical channel

Frequency response of channel, |H(f)|, with coherence bandwidth of $B_c = 20 \text{MHz}$

Path loss

$$P_{\rm R} = \frac{n+1}{2\pi} P_{\rm T} \cos^n(\theta_{\rm Tx,d}) \frac{A}{d_0^2} \cos(\theta_{\rm Rx,d}) \operatorname{rect}(\theta_{\rm Rx,d})$$

$$+ \frac{n+1}{2\pi} P_{\rm T} \int_x \int_y \int_\theta \int_\phi \cos^n(\theta_{\rm Tx}) \frac{\rho \mathcal{R}(\theta,\phi)}{d_1^2}$$

$$\times \frac{A}{d_2^2} \cos(\theta_{\rm Rx}) \operatorname{rect}(\theta_{\rm Rx}) \, dx \, dy \, d\theta \, d\phi .$$

bi-directional reflectance distribution function (BRDF)

Path loss, cont'd

Optical path gain

$$g_{\text{h(opt)}}(\lambda) = P_{\text{R}}(\lambda) S_{\text{PD}}(\lambda) G_{\text{TIA}} / (P_{\text{T}}(\lambda) \sqrt{r_{\text{load}}})$$

Electrical path gain

$$g_{\text{h(elec)}} = \frac{1}{B} \int_{-B/2}^{B/2} |H(f)|^2 df = g_{\text{h(opt)}}^2 \frac{1}{B} \int_{-B/2}^{B/2} |H_{\text{norm}}(f)|^2 df$$

Path loss

 $\mathrm{PL}(d) = 10 \log_{10} \left(\frac{P_{\mathrm{T}}}{E(d_{\mathrm{ref}})A_{0}} \right) - 10 \log_{10} \left(\frac{A}{A_{0}} \right) + 10 \zeta \log_{10} \left(\frac{d}{d_{\mathrm{ref}}} \right) + \xi$

Irradiance

distance

Detector area

Received power in the vertical XZ plane along path 4 (y = 6m), backward observer

LOS path loss exponent along path 4 (y = 6m, z = 1.7m, and x in the interval [0.5, 6.1]m)

Example: Aircraft cabin / NLOS

Received power in the vertical XZ plane along path 2 (y = 2m); sum of back, front, left and right

NLOS path loss exponent along path 2 (y = 2m, z = 2m, and x in the interval [0.5, 6.1]m)

Modulation Techniques

Transceiver building blocks

Pulsed Modulation

On-OFF Keying

Single Carrier Multi-level

PPM: BER Performance

Spectal Efficiency:

 $\log_2(M)/M$ bits/s/Hz

$$BER_{PPM} \ge \frac{M}{2} Q \left(\sqrt{\frac{M E_{RX}}{2 N_0}} \right)$$

PAM: BER performance

OFDM-based OWC System

OFDM

DCO-OFDM and ACO-OFDM Symbol Structures

DCO-OFDM

DC	QAM						QAM^*				
x_0	x_1	•••	•••	•••	$\frac{\chi_N}{2}$ -1	$\frac{x_N}{2}$	$x^*_{\frac{N}{2}-1}$	• • •		•••	x^*_1

ACO-OFDM

QAM vs. CAP

QAM

CAP

A. H. Abdolhamid, et al. "A Comparison of QAM/CAP Architectures", 1998

OFDM Generation (Time Domain)

After the IFFT, the signal follows a zero-mean Gaussian distribution in the time domain:

Multi-carrier Multi-level

UPVLC Results (assuming single colour µLED)

- \nearrow *X* is a zero-mean Gaussian random variable with variance σ and g(X) is an arbitrary transform on *X*, which could be linear or nonlinear.
- > The Bussgang theorem:

$$g(X) = KX + Y_{n}$$
$$E[XY_{n}] = 0$$

> Then:

$$\frac{E_{\rm b}^{\rm new}}{N_{\rm o}^{\rm new}} = \frac{K^2 E_{\rm b}^{\rm old}}{N_{\rm o} + \text{Var}[Y_{\rm n}]}$$

$$K = \frac{E[X g(X)]}{\sigma^2}$$

$$E[Y_n^2] = E[g^2(X)] - K^2 \sigma^2$$

$$E[Y_n] = E[g(X)]$$

$$Var[Y_n] = E[Y_n^2] - E[Y_n]^2$$

- Any arbitrary distortion function g(x) can be represented with a set of intervals I and a number of continuous polynomials which describe the function in those intervals.
- \triangleright Then g(X) becomes:

$$g(x) = \sum_{k=1}^{|I|} \sum_{j=0}^{n_k} c_{k,j} x^j (U(x - x_{\min,k}) - U(x - x_{\max,k}))$$

where n_k is the order of the polynomial in interval k, and

U(x) is the unit step function:

$$U(x) = \begin{cases} 0, x < 0 \\ 1, x \ge 0 \end{cases}$$

Examples

> 3-bit DAC:

$$g(x) = 3(U(x-1.5) - U(x-\infty)) + 1(U(x) - U(x-1.5)) - 1(U(x+1.5) - U(x)) - 3(U(x+\infty) - U(x+1.5))$$

Clipping and LED current-to-light conversion:

$$g(x) = 3(U(x-3) - U(x-\infty)) + + (-1x^{2} + 7x - 5)(U(x-1) - U(x-3)) + +1(U(x+\infty) - U(x-1))$$

The equations from the Bussgang analysis become:

$$K = \frac{1}{\sigma^2} \sum_{k=1}^{|I|} \sum_{j=0}^{n_k} c_{k,j} \frac{d^{j+1}D(t, x_{\min,k}, x_{\max,k}, 0, \sigma)}{dt^{j+1}} \bigg|_{t=0}$$

$$E[g(X)] = \sum_{k=1}^{|I|} \sum_{j=0}^{n_k} c_{k,j} \frac{d^j D(t, x_{\min,k}, x_{\max,k}, 0, \sigma)}{dt^j} \bigg|_{t=0}$$

$$E[g^{2}(X)] = \sum_{k=1}^{|I|} \sum_{j=0}^{n_{k}} \sum_{m=0}^{n_{k}} c_{k,j} c_{k,m} \frac{d^{j+m}D(t, x_{\min,k}, x_{\max,k}, 0, \sigma)}{dt^{j+m}} \bigg|_{t=0}$$

Tsonev, et al., JLT, 2013

Channel Capacity: Optimisation Frameworks

Given:

BER, M, $P_{\min,\text{norm}}$, $P_{\max,\text{norm}}$ and $P_{\text{avg},\text{norm}}$

Find:

where

ZF equalizer

$$\gamma_{\text{b(elec)}} = \frac{G_{\text{B}}}{|H(f_{\text{info}})|^2 G_{\text{T}} G_{\text{DC}}} \left(qK^2 - \frac{G_{\text{B}} \log_2(M) \sigma_{\text{clip}}^2}{P_{\text{s(elec)}}} \right)^{-1}$$

MMSE equalizer

$$\gamma_{\text{b(elec)}} = \frac{\frac{G_{\text{B}}}{G_{\text{T}}G_{\text{DC}}} - \left(qK^2 - \frac{G_{\text{B}}\log_2(M)\sigma_{\text{clip}}^2}{P_{\text{s(elec)}}}\right)}{|H(f_{\text{info}})|^2 \left(qK^2 - \frac{G_{\text{B}}\log_2(M)\sigma_{\text{clip}}^2}{P_{\text{s(elec)}}}\right)}$$
$$q = \frac{3\log_2(M)}{M - 1} \left(Q^{-1} \left(\frac{\text{BER}\sqrt{M}\log_2(M)}{4(\sqrt{M} - 1)}\right)\right)^{-2}$$

Constraints: $E[\Phi(\mathbf{x}_l)] \leq P_{\text{avg,norm}}$

$$\lambda_{\rm top} > \lambda_{\rm bottom}$$
 in DCO-OFDM

$$\lambda_{\rm top} > \lambda_{\rm bottom} \ge 0$$
 in ACO-OFDM

Results

Spectral Efficiencies

Spectral efficiency vs. electrical SNR requirement for a BER of 10^{-3}

Figure 5.4 Spectral efficiency vs. electrical SNR requirement for a 10^{-3} BER of the OWC schemes in a flat fading channel with impulse response $h(t) = \delta(t)$ and a neglected DC-bias power.

Spectral efficiency vs. electrical power requirement for a BER of 10^{-3}

Figure 5.5 Spectral efficiency vs electrical SNR requirement for a 10^{-3} BER of the OWC schemes in a flat fading channel with impulse response $h(t) = \delta(t)$, including the DC-bias power for a 10-dB dynamic range.

Implications on Dimming

Normalized average optical power vs. electrical power requirement for a BER of 10^{-3}

Theoretical Capacity limits, cont'd

For 10 dB dynamic range:

- (1): with optimisation, DC bias power **not** included
- (2): without optimisation, DC bias power **not** included
- (3): with optimisation, DC bias power included
- (4): without optimisation, DC bias power included

Spatial Modulation: How does it work?

Input bits

 c_1 c_2 c_3 c_4 e.g. 4 sub-carriers per OFDM symbol

$$BER_{SSK} \leq \frac{1}{N_t \log_2(N_t)} \sum_{n_t^{(1)}=1}^{N_t} \sum_{n_t^{(2)}=1}^{N_t} d_H \left(b_{n_t^{(1)}}, b_{n_t^{(2)}} \right) \cdot Q \left(\sqrt{\frac{E_s}{4 N_0}} \sum_{n_t=1}^{N_r} \left| h_{n_t n_t^{(2)}} - h_{n_t n_t^{(1)}} \right|^2 \right),$$

Thank You!